Visual Learning by Evolutionary Feature Synthesis
نویسندگان
چکیده
In this paper, we present a novel method for learning complex concepts/hypotheses directly from raw training data. The task addressed here concerns data-driven synthesis of recognition procedures for real-world object recognition task. The method uses linear genetic programming to encode potential solutions expressed in terms of elementary operations, and handles the complexity of the learning task by applying cooperative coevolution to decompose the problem automatically. The training consists in coevolving feature extraction procedures, each being a sequence of elementary image processing and feature extraction operations. Extensive experimental results show that the approach attains competitive performance for 3-D object recognition in real synthetic aperture radar (SAR) imagery.
منابع مشابه
Machine learning based Visual Evoked Potential (VEP) Signals Recognition
Introduction: Visual evoked potentials contain certain diagnostic information which have proved to be of importance in the visual systems functional integrity. Due to substantial decrease of amplitude in extra macular stimulation in commonly used pattern VEPs, differentiating normal and abnormal signals can prove to be quite an obstacle. Due to developments of use of machine l...
متن کاملNovel Radial Basis Function Neural Networks based on Probabilistic Evolutionary and Gaussian Mixture Model for Satellites Optimum Selection
In this study, two novel learning algorithms have been applied on Radial Basis Function Neural Network (RBFNN) to approximate the functions with high non-linear order. The Probabilistic Evolutionary (PE) and Gaussian Mixture Model (GMM) techniques are proposed to significantly minimize the error functions. The main idea is concerning the various strategies to optimize the procedure of Gradient ...
متن کاملControl of Inductive Bias in Supervised Learning using Evolutionary Computation: A Wrapper-Based Approach
In this chapter, I discuss the problem of feature subset selection for supervised inductive learning approaches to knowledge discovery in databases (KDD), and examine this and related problems in the context of controlling inductive bias. I survey several combinatorial search and optimization approaches to this problem, focusing on datadriven validation-based techniques. In particular, I presen...
متن کاملImproving of Feature Selection in Speech Emotion Recognition Based-on Hybrid Evolutionary Algorithms
One of the important issues in speech emotion recognizing is selecting of appropriate feature sets in order to improve the detection rate and classification accuracy. In last studies researchers tried to select the appropriate features for classification by using the selecting and reducing the space of features methods, such as the Fisher and PCA. In this research, a hybrid evolutionary algorit...
متن کاملVisual routine for eye detection using hybrid genetic architectures
We address the problem of crafting visual routines for detection tasks. Emphasis is placed on both competition and learning to help with specific visual tasks involved in localization and identification. Crafting of visual routines presents difficult optimization problems and leads to evolutionary computation using a hybrid genetic architecture consisting of natural selection, learning, and the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2003